LARGE TIME ASYMPTOTIC TO POLYNOMIALS SOLUTIONS
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ABSTRACT. This article is concerned with solutions that behave asymptoti-
cally like polynomials for n-th order (n > 1) nonlinear ordinary differential
equations. For each given integer m with 1 <m < n— 1, sufficient conditions
are presented in order that, for any real polynomial of degree at most m, there
exists a solution which is asymptotic at co to this polynomial. Conditions are
also given, which are sufficient for every solution to be asymptotic at co to a
real polynomial of degree at most n — 1. The application of the results ob-
tained to the special case of second order nonlinear differential equations leads
to improved versions of the ones contained in the recent paper by Lipovan
[Glasg. Math. J. 45 (2003), 179-187] and of other related results existing in
the literature.

1. INTRODUCTION

In the asymptotic theory of n-th order (n > 1) nonlinear differential equations,
an interesting problem is that of the study of solutions with prescribed asymptotic
behavior via solutions of the equation (™ = 0. This problem has been extensively
investigated during the last four decades for the case of second order nonlinear dif-
ferential equations; see Cohen [3], Constantin [4], Dannan [7], Hallam [8], Lipovan
[12], Mustafa and Rogovchenko [14], Naito [15, 16, 17], Philos and Purnaras [21],
Rogovchenko and Rogovchenko [25, 26], Rogovchenko [27], Rogovchenko and Villari
[28], Tong [31], Yin [33], and Zhao [34] (and the references cited in these papers).
For the case of linear second order differential equations, we restrict ourselves to
mention the paper by Trench [32]. The above mentioned problem has also been
treated for higher order nonlinear differential equations by several researchers; see
Kusano and Trench [9, 10], Meng [13], Philos [18, 19, 20], Philos, Sficas and Staikos
[22], Philos and Staikos [23], and the references therein. Note that the papers [18,
19, 20, 22, 23] are concerned with differential equations with deviating arguments
(including the ordinary differential equations as a particular case). We also mention
here the paper by Philos and Tsamatos [24] concerning nonlinear retarded differ-
ential systems. In the present paper, we are concerned with n-th order (n>1)
nonlinear ordinary differential equations and we study solutions that approach real
polynomials of degree at most n — 1. Qur work is essentially motivated by the
recent one by Lipovan [12] for the special case of second order nonlinear ordinary
differential equations; the results in [12] are extended and improved in our paper.
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Consider the n-th order (n > 1) nonlinear differential equation
(E) =™t = f(t.2(), t2%>0,

where f is a continuous real-valued function on [ty, o) x R.

Our purpose in this paper is to investigate solutions of the differential equation
(E), which behave asymptotically at co like real polynomials of degree at most 7— 1,
ie. like solutions of the equation z(™ = 0. More precisely, for each given integer
m with 1 <m < n — 1, we establish sufficient conditions in order that, for any real
polynomial of degree at most m, (E) has a solution defined for all large ¢, which
is asymptotic at oo to this polynomial and such that the first » — 1 derivatives
of the solution are asymptotic at co to the corresponding first n — 1 derivatives
of the given polynomial. We also provide conditions, which guarantee that every
solution defined for all large ¢ of (E) is asymptotic at oo to a real polynomial of
degree at most n — 1 (depending on the solution) and, in addition, the first n — 1
derivatives of the solution are asymptotic at oo to the corresponding first n — 1
derivatives of this polynomial. Moreover, we give sufficient conditions for every
solution z defined for all large ¢ of (E) to satisfy z(*~1)(t) — ¢ for ¢ — oo (and so
[=(2) /£ = [¢/(r — 1)1] for t — 00), where ¢ is some real number (depending on
the solution z).

Our main results are stated in Section 2. This section contains also the applica-
tion of the main results to the special case of the second order nonlinear differential
equation

(Eo) z(t) = f(t,z(t)), &>ty > 0.

The proofs of the main results are given in Section 3. Two general examples (Exam-
ples 1 and 2) are contained in the last section (Section 4). Example 1 is concerned
with the application of the main results to n-th order (n > 1) Emden-Fowler equa-
tions, while Example 2 illustrates the applicability of our first main result to a
specific second order superlinear Emden-Fowler equation.

We note, here, that the application of our main results to the second order
nonlinear differential equation (Eg) leads to improved versions of the ones given
recently by Lipovan [12] (and of other previous related results in the literature) as
well as to a result due to Rogovchenko and Rogovchenko [25] (see, also, Mustafa
and Rogovchenko [14]).

It is an open problem to extend the results of the present paper for the more
general case of n-th order (n > 1) nonlinear differential equations of the form

™(t) = F(t, (), 2 (£), ., s D(2)), t>t >0,

where F' is a continuous real-valued function on [to, 00) x R™. This problem remains
interesting still in the special case of second order nonlinear differential equations
of the form

a:”(t) = Fy(t, a:(t),a:’(t)), t>1p >0,
where Fj is a continuous real-valued function on [to, 00) x R2.
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2. STATEMENT OF THE RESULTS

Our main results are formulated as two theorems (Theorems 1 and 2 below), a
corollary of the first of these theorems, and a proposition. Our proposition plays
an important role in proving the second theorem (Theorem 2); however, it is also
interesting of its own as a new result.

Throughout the paper, we are interested in solutions of the differential equation
(E) which are defined for all large ¢, i.e. in solutions of (E) on an interval [T, 00),
where T' > ¢5 may depend on the solution. For questions about the global existence
in the future of the solutions of (E), we refer to standard classical theorems in the
literature (see, for example, Corduneanu [5], Cronin [6], and Lakshmikantham and
Leela [11]).

Theorem 1. Let m be an integer with 1 <m <n — 1, and assume that

&

eV e <p () +a0) foralt (4.2) € i 00) xR,

where p and g are nonnegative continuous real-valued functions on [to, o0) such
that

oo o0
(2.2) f " Ip(t)dt < co and f " q(t)dt < o0,
to to
and g is o nonnegative continuous real-valued function on [0, c0) which is not iden-
tically zero.
Let cg, ¢y, ..., Cm be real numbers and T be a point with T > to, and suppose that
there exists a positive constant K so that

* (s—T)"1 K & e
(2.3) [j,; %ﬁ_p(s)ds]sup{g(z):USZS—T;—!-;%}

N ./Tm %Q(s)ds <K.

Then the differential equation (E) has a solution = on the interval [T, ), which
is asymptotic to the polynomial cy + c1t + ... + cpt™ for t — oo, i.e.

(2.4) z(t) = co+ert + ... + cut™ + 0(1)  for t — oo,

and, in aeddition, satisfies

(2.5) z0)(¢) = Zz(z — 1=+ et +0(1) fort—-oo (j=1,..,m)
i=j

and, provided that m <mn — 1,

(2.6) z®)(t) = o(1) for t — o (k=m+1,..,n—1).

Corollary. Let m be an integer with 1 < m <n— 1, and assume that (2.1) is
satisfied, where p and q, and g are as in Theorem 1.

Then, for any real numbers co,c1,...,Cm, the differential equation (E) has a
solution z on an interval [T, co) (where T > max{ty, 1} depends on ¢y, c1,-..,Cm),
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which is asymptotic to the polynomial co + cit + ... + ct™ for t — oo, i.e. (2.4)
holds, and, in addition, satisfies (2.5) and (provided that m < n — 1) (2.6).
Proposition. Assume that

|2l

@D 1Al <p00 (F2) +a0) forall (1) € fo,00) xR,

where p and q are nonnegative continuous real-valued functions on [to, 00) such
that

(2.8) f p(t)dt < co and / q(t)dt < oo,
to to

and g is a continuous real-valued function on [0, co0), which is positive and increasing
on (0,00) and such that

® dz
(2.9) /1 ot

Then every solution z on an interval [T, 00), T > o, of the differential equation
(E) satisfies

(2-10) 2" D() = e+ o(1) for t — oo
and
(2.11) 2(t)= iy o(t™ 1) for t — oo,

(n—1)!

where ¢ is some real number (depending on the solution ).

Theorem 2. Assume that (2.7) is satisfied, where p and q are as in Theorem
1, and g is as in Proposition.
Then every solution = on an interval [T, 00), T > to, of the differential equation
(E) is asymptotic to a polynomial co + c1t + ... + cp_t*~1 Jor t — o0, e
(2.12) z(t) =co+ it +..+cp1t™ 1 4+ 0(1) fort— oo,
and, in addition, satisfies
n—1 o
(213) 2YV(t) =D i —1)..(i—j+ Vet +0(1) fort— oo
i=j
(Gj=1,..,n—1),
where cg, ¢y, ...,cn—y1 are Teal numbers (depending on the solution z). More pre-
cisely, every solution z on an interval [T,c0), T > tg, of (E) satisfies

(2.14) (t) =Co+Ci(t —T)+ ... + Coca(t —T)" 1 4+ 0(1) fort — o
and, in addition,

n—1
(2.15) D)= (i —1)..(i—j+ D)Ci(t — T)*7 +0(1) for t — oo

=7

(i=1,..,n—1),
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where
; [0 (g _ TYyn—1—i
(216) Ci= [a:(')(T)-}—(—l)“‘l_’ ]T ““—”((n _Tl)_z_)[ f(s,x(s))ds]

(i=0,1,....,n—1).

A combination of the corollary and Theorem 2 leads to the following result:

Assume that (2.7) is satisfied, where p and g are nonnegative continuous real-
valued functions on [to, 0o) such that (2.2) holds, and g is a nonnegative continuous
real-valued function on [0,00) which is not identically zero. Then, for any real
polynomial of degree at most n — 1, the differential equation (E) has a solution
defined for all large t, which is asymptotic at oo to this polynomial. Moreover, if,
in addition, g is positive and increasing on (0,00) and such that (2.9) holds, then
every solution defined for all large t of (E) is asymptotic at oo to a real polynomial
of degree at most n— 1 (depending on the solution).

Now, let us concentrate on the special case of the second order nonlinear differ-

ential equation (Ep). In this case, Theorem 1, the corollary, the proposition, and
Theorem 2 are formulated as follows:

Theorem 1A. Assume that
@1 152 <plog (2

)
where p and g are nonnegative continuous real-valued functions on [tg,c0) such
that

) +q(t) for all (t,2) € [ty,0) x R,

o0 o]
f tp(t)dt < co and / tg(t)dt < oo,

tg to
and g is a nonnegative continuous real-valued function on [0, c0) which is not iden-
tically zero.
Let ¢, ¢; be real numbers and T be a point with T > ty, and suppose that there
ezists a positive constant K so that

[/:O(S—T)p(s)ds] sup {g(z) :0<z2L % + I—;_,'Ll + Icll}

oo
+ / (s — T)g(s)ds < K.
g
Then the differential equation (Eq) has a solution = on the interval [T, o0), which
s asymptotic to the line co + c1t for t — oo, i.e.
(2.18) z(t) = co + c1t + o(1) for t — oo,
and, in aeddition, satisfies

(2.19) z'(t) =c1 +0o(1) for t — cc.

Corollary A. Assume that (2.17) is satisfied, where p and g, and g are as in
Theorem 1A.
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Then, for any real numbers co,c1, the differential equation (Eq) has a solution
z on an interval [T, co) (where T > max{to, 1} depends on co,c1), which is asymp-
totic to the line co + 1t for t — oo, i.e. (2.18) holds, and, in addition, satisfies
(2.19).

Proposition A. Assume that (2.17) is satisfied, where p and g are nonnegative
continuous real-valued functions on [tg, 00) such that (2.8) holds, i.e. such that

o0 e o]
/ p(t)dt < co and / g(t)dt < oo,
ta

2o

and g is a continuous real-valued function on [0, 00), which is positive and increasing
on (0,00) and such that (2.9) holds, i.e. such that

* dz
/1 ity
Then every solution = on an interval [T',00), T > to, of the differential equation
(Eo) satisfies
z'(t) =c+o0(l) fort— o
and
z(t) = ct +o(t) fort — oo,

where c is some real number (depending on the solution ).

Theorem 2A. Assume that (2.17) is satisfied, where p and g are as in Theorem
1A, end g is as in Proposition A.

Then every solution x on an interval [T, o), T > tg, of the differential eguation
(Eo) is asymptotic to a line coy+ cit for t — oo, i.e. (2.18) holds, and, in addition,
satisfies (2.19), where co, ¢ are real numbers (depending on the solution z). More
precisely, every solution z on an interval [T, 00), T > to, of (Ep) satisfies

z(t) = Co+ C1(t —T) +o(1) for t — co
and, in addition,
z'(t) = C1 + o(1) for t — oo,

where

Co=z(T) — /:O(s —T)f(s,z(s))ds and C;==z'(T)+ /;oc F(s,z(s))ds.

The main results in the recent paper by Lipovan [12] are formulated as two
theorems (Theorems 1 and 2). Theorem 1 in [12] is contained in Corollary A,
while Theorem 2 in [12] is included in Theorem 2A. Note, also, that Proposition A
has been previously established by Rogovchenko and Rogovchenko [25] (see, also,
Mustafa and Rogovchenko [14]).
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3. PROOFS OF THE MAIN RESULTS

In order to prove Theorem 1, we will apply the fixed point technique, by using
the following Schauder’s theorem (see Schauder [29]).

The Schauder theorem. Let E be a Banach space and X any nonempty
conver and closed subset of E. If S is a continuous mapping of X into itself and
SX is relatively compact, then the mapping S has at least one fized point (i.e. there
erists an T € X with ¢ = Sz).

In the proof of Theorem 1, we use the Schauder theorem with E = B([T, 0)),
where B([T,c0)) is the Banach space of all continuous and bounded real-valued
functions on the interval [T, c0) endowed with the sup-norm ||-||:

2]l = sup[h(z)]  for k € B(T,0)).

We need the following compactness criterion for subsets of B([T,cc)), which is a
corollary of the Arzela-Ascoli theorem (see Avramescu [1]; see, also, Staikos [30]).

Compactness criterion. Let H be an equicontinuous and uniformly bounded
subset of the Banach space B([T,o0)). If H is equiconvergent at oo, it is also
relatively compact.

Note that a set H of real-valued functions defined on the interval [T, ) is called
equiconvergent at oo if all functions in H are convergent in R at the point co and,
in addition, for every e > 0 there exists a 7" > T such that, for all functions £ in .
H, it holds

|h(t) — lim h(s), <e forallt>T".
§—00

To prove our proposition we will make use of the well-known Bihari’s lemma (see
Bihari [2]; see, also, Corduneanu [5]). This lemma is given here in a simple form
which suffices for our needs.

The Bihari lemma. Assume that
t
h(t) < M + f 1(s)g(h(s))ds for t > Ty,
To

where M is a positive constant, h and p are nonnegative continuous real-valued
functions on [Ty, 0), and g is o continuous real-valued function on [0,00), which
15 positive and increasing on (0,00) and such that

k=

h(t) < G1 (G(M) + f t ,u(s)ds) for t > Ty,

To
where G is a primitive of 1/g on (0,00) and G~ is the inverse function of G.

Then

Now, we are in the position to proceed with the proofs of our main results.
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Proof of Theorem 1. The substitution
y(t) = z(t) — (co + c1t + ... + cmt™)
transforms the differential equation (E) into the equation

i=0

m
(E*) ™M) =f (t,y(t) + th") , £21>0.
We immediately see that

Y@ =20 - Y i - 1).(i—j+ Det™  (=1,..,m)
i=j
and, provided that m <n —1,
yO@O) =s®() (k=m+1,...n—1).

Hence, by taking into account (2.4), (2.5) and (2.6), we conclude that all we have
to prove is that the differential equation (E*) has a solution y on the interval [T, co)
with

(3.1) Jim y(P)(t) =0 (p=0,1,..,n—-1).

Consider the Banach space E = B([T, o)) endowed with the sup-norm [I-l, and
define

Y={ycE: |y|<K}.
Clearly, Y is a nonempty convex and closed subset of E.
Now, let y be an arbitrary function in Y. For every t > T, we have

ly(®) + g Gt Iy(t)l Z lei] el
tm tm— i — Tm Tm—z"
=0 =0
Consequently
t o ctt
g (Iy( )+t§’=°c‘ I) <O foreveryt>T,

where

659(00,01, ,Gm.TK)—SuP{g(z) 0<z§Tm+ZTm-4}

On the other hand, (2.1) gives

f (t, y(t) + iciti) < p(t)g (Iy(t) + 2% c;t"f) +g(t) fort>T.

tm
i=0

So, it follows that

7 (t,y(t) ¥ fc,t)

=0

(3.2) <Op(t)+¢(t) forallt>T.

Thus, in view of (2.2), we conclude that

fm (S _ T)'n—l mn s . )
- W‘f s,y(s)+Zc,—s ds existsin R

i=0
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and, more generally,

: %{i (s,y(S)-!-g;cgsi)ds existsin R (p=0,1,..,n—1).

Furthermore, by using (3.2), we obtain for every t > T,
® (g — ¢)n—1 n .
/: (—(71-—_2)17—)‘ (s, y(s) + ;c,-s') ds
S'[wgs(n_—f):)—_!i f (s,y(S)Jchasi) ds
oC G n—1
5]; (_(n_—Ill)_— (s y(s)+zc¢s)
s— Tyl n—1
< GL ( e )1)' (s) ds+/ (= )1)‘ g(s)ds.

Hence, by taking into account (2.3), we have

(3-3) l] (s 1)' (S,y(s) + Zcisi) ds

i=0

<K foreveryt>T.

As (3.3) is true for any function y € ¥, we can immediately conclude that the
formula

(Sy)(®) = (- 1)"f Ef——-—):)—:l (s,'y(s) + Zcisi) ds fort>T

i=0

defines a mapping S of Y into itself. We shall prove that this mapping satisfies the
assumptions of the Schauder theorem.

First, we will show that SY is relatively compact. Since SY CY, it follows
mmedaately that SY is uniformly bounded. Moreover, for each functlon yinY,
we can use (3.2) to derive for all ¢t > T

= %——f (s,y(s) + Zc,s") ds
t i i=0
2 (s —gy-l

——|f| sy(s)+ ;s' )| ds
A (n—1)! (‘5 y(s) ;Ct )

< o [ 0 poas [ s

So, by taking into account (2.2), we can easily verify that SY is equiconvergent,
at co. Furthermore, by using again (3.2), for any y € Y and every #;,t; with

I(5y)(2) — 0]

INA
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T <t <ts, we get

[(Sy)(t=) — (Sy)(t2)l =

to

(S(n tz)l)l_l (s,y(s) + Zﬁisi) ds

i=0

;e o S )
i=0
LI o) e
tz e : i=0
_fm [/;m (—'i-;_-r)%):z (s,y(s) +g;ci$i) ds} dr
ol I =7y~ 7’)"—2 & o
] NCED)E 2)\, s,y(s) + Zc,.s ds| dr
" =0
to — 7. n—2 bii: 7
L[ oSl
i=0
<O ’ [/-cc (ST._ﬂTn):zp(s)ds] dr
TN

Thus, because of (2.2), it follows that SY is equicontinuous. By the given com-
pactness criterion, SY is relatively compact.
Next, we shall prove that the mapping S is continuous. Let y €Y and (y,,)l,>1
be an arbitrary sequence in ¥ with
lim y, =y.

V—00

By (3.2), we have

)f (ta yy(t) G iciti)
=0

and hence, by taking into account (2.2), we can apply the Lebesgue dominated
convergence theorem to obtain, for each t > T,

UILHgOV/tco %—__1_5)_1"); (s Y (8) + ZQS ) ds

=0
(S )'n -1 m ;
L S (s, y(s) + gqs ) ds

<Op(t)+q(t) foreveryt>T andforall v>1

So, we have the pointwise convergence

Jim (Sy,)(2) = (Sy)(t) for¢>T.
It remains to verify that the convergence is also uniform, i.e.
(34) Jim Sy, = Sy.
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To this end, let us consider an arbitrary subsequence (Sy,, )u>1 of (S¥),5,;- Since
SY is relatively compact, there exists a subsequence (Sym\v)y)1 of (Syu,),>, and
a u € F so that

Lim S; Yus, = -

V—o0
As the uniform convergence implies the pointwise convergence to the same limit
function, we always have u = Sy. We have thus proved that (3.4) holds. Conse-
quently, S is continuous.
Finally, the Schauder theorem implies that there exists a y € ¥ with y = Sy, ie.

y(t) = (— 1)“[ (s—):)_'l- (s,y(s) + Zm:cisi) ds foreveryt>T.

i=0
Then we immediately obtain

y™(@) = f (t, y(t) + iqti) forallt> T,

i=0
which means that y is a solution on the interval [T, co) of the differential equation
(E*). We also have

yO@E) = (—1)"r t°° ((i;__?n-__lT_)?f (s,y(s) + zZi;c,-si) ds forallt>T

(p=0,1,...,n-1)

and consequently the solution y satisfies (3.1).
The proof of the theorem is complete.

Proof of the corollary. Let cp,cy,-..,Cm be given real numbers. Consider a
positive constant K so that

i=0
(Such a K exists because of the hypothesis that g is not identically zero on [0, 0).)
By (2.2), we can choose a point 7' > max{ty, 1} such that

(s —T)*! K ®(s—T K
fT S preeMs <o ad [ (n_l), EoTP s < K.

Gossup{g(z): USZSK‘FZfCil} > 0.

Since T' > 1, we have

+ZTm - _K+Z|c,1

i=0
and consequently

IA

2

o
=y

g(z) : 052§K+Z[q[}5

=0
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Thus, we obtain

® (s—T)""1 R (s=T)"=1 K K
L STrronfes [T don s o f <

ie. (2.3) is satisfied. So, the corollary follows immediately from Theorem 1.

Proof of the proposition. Let z be a solution on an interval [T,00), T > to, of
the differential equation (E). Then (E) gives

—b=~T) & t(t— s)n1
I(t)=§(T)z”(T)+ fT (—(—T%f(s,m(s))ds fort > T.

Thus, by using (2.7), we obtain for every ¢t > T

n—1 i t — oyn—1
0 < 3 S5 @)+ [ EZD 16 atepias
2 .

n—-1 ;
1

4
n—1 ti
x

i=0

IA

20w+ [t oo (22) 4 g09)]

z® (T)I -+ i _/,; - q(s)ds] F -1 " _p(s) g (I:c(s) l) ds.

(n—1)! 7 (n—1)17 \ s»1

IA

So, we have

B _ = 1 . 1 [ '
l:i(Tzl = [ZE e [0 @) + (n— 1) j; Q(“")dsJ * f (anS)l)!g (l:fﬂl) e

T

for all t > T. Thus, because of the second assumption of (2.8), there exists a
positive constant M so that

t ¢ s
(3.5) % <M +/;1 (npi )1)!_9 (I:;(ﬂl) ds foreveryt>T.

Next, we define
? du
= p—— ) i .

G(2) fM 5 frezM
(Note that g(u) > 0 for u > M > 0.) Clearly, G is a primitive of the function 1/g
on [M, co). We observe that G(M) = 0 and that G is strictly increasing on [M, 00).
Moreover, we see that (2.9) implies G(c0) = co. Thus, the range of G is equal to
[0,00). Let G~ be the inverse function of G. The function G- is also strictly
increasing on its domain [0, ), and the range of G~ equals to [M, co). In view of
the above observations, we can take into account (3.5) and use the Bihari lemma
to obtain

Em(t)l =of k P(S) —1 1 i
SN AT —_ e b R £
P} G G(M) +] ( 1)!ds =G ( 1! / p(s)ds) fort>T
Hence, by taking into account the first assumption of (2.8), we get
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i.e. there exists a positive constant N so that

|lz(@)]

Now, by using (2.7) and (3.6), we derive
|=(2)]

1562601 < 200 () +a(0) <p() sup o) +a(t) for 2T,

Thus, because of (2.8), it follows immediately that
/:o f(s,z(s))ds exists (as a real number).
But, (E) gives
(D (1) = 2*~)(T) + /: f(s,z(s))ds fort>T.
Therefore,

Tim 1) (t) = p(»-1) (T) + /00 f(s, a:(s))ds =ceR,
T

t—o0
ie. (2.10) holds. Finally, by the L’ Hospital rule, we obtain

I(t) — 1 z (n—1) o
f—ootn—1 (n— 1)!35201 (t) -

(n—1)!

and consequently the solution z satisfies (2.11).
The proof of the proposition has been completed.

33

Proof of Theorem 2. Let = be a solution on an interval [T,00), T > tg, of the
differential equation (E). We observe that (2.2) implies (2.8). Thus, as in the proof
of the proposition, we conclude that there exists a positive constant N such that
(3.6) holds. (Note that this conclusion can be obtained from the proposition itself,
since it guarantees that Jim [#(t)/¢*~!] = C for some real number C.) By virtue

of (2.7) and (3.6), we have

1200 <500 () +a(0) <50 sup o(2) +a(t) fore>T.

So, by taking into account (2.2), we see that

o [P la=Ty _
L; = fT mf(s, :z:(s))ds ('l, =0,1, ey T2 — 1)

are real numbers.
Now, from (E) it follows that

] (t _ S)'n—l

_N0=T)
(37) z(t) = ; -—-—i-!-—:r( )(T) + . m-

f(s,z(s))ds fort>T.
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For every t > T, we obtain

+— n-—1
i ((n o £ a()as
t s n—1
— [ ((n )1)' [ Fin, a:('r))d’r]

- t(nf):; / Flry2(r))dr — f L );)',2 [ sm f(r,:r:(r))dr} ds

_ (t—T)™1 t(t—s)n2
T (m—1) Fig = r (n—2)

[ g6 :z:(r))dr] ds.

Let us assume that n > 2. Then we derive, for ¢ > iy

t (¢ gym—1
o E(n__'i)f)!_f(S,iﬂ(S))ds
_ myn—1 i omed ~
— (t(n f)}_)! Lp 1+ - %——S)A?Td [ (r—s8)f(r, x(r))drjl
- n—1 s n—2
- (f(n f)l)! Ln-1— (t(n T)z)' f (r — T)f(r,z(r))dr
n—3 oo
T (i’ﬂ —)3)! [ _/S. (r—s)f (T,:G(T))dr] ds
_ -1 (t — T)»2

- (n—1)! e (n—2)! L2

Tt (i;f);)_!a [ f =880 m(r))dr} ds

If n > 3, then we can apply the same arguments to obtain, for every t > T,

) (t(; . Bt )
_ (t T)n -1 (t —- T)n-—2 (t - T)n—3
T EeO T e et gy s

= /ﬂ: t (t(,,: j):)_!4 [ fs ” (T ) Fir, :B(T))dr]

Following this procedure, we finally conclude that

t t— g)y»—1
[ et
n—1 n=2 —LJ"
_(t(n T)) =1L, 1+(t_(£)7—( DLy +.. +( T) ()" Ly

e T) (—1)"2L; + (— ln—lf [ (In-s);‘)'?f(r, r))dr] ds
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for all £ > T. Furthermore, we have for ¢t > T

t (t - S)n—l

- (—n__—i)Tf(S,-’c(S))ds
(t T) n—1—i n—1 * o ( s)n—2 r p I
g R L = O o e(r))ar] as

- [T [T f0,a(r))ar] a

n—1 i = ([ 1=
“z(t T)( 1)n—1~zL +( 1)‘"'—1 s %—— (T,-’E(T))d'r

+ (-1)* [m (( t):)_' f(r,z(r))dr

i=1

= ni _(—TZ( 1)n—1—zL o ( l)n—lLo + (_l)n‘/t ( t)n— f{’l",m(r))dr

i=1 (n 1)'
g (i:—T)2 n— —IL +( 1)"’/ (T ):)1 f(’r 33(7'))

Thus, (3.7) yields

n—1
o0 =X G O+ orn a7 sy

i=0

for all £ > T'. Hence, by taking into account the definition of L; (i =0, 1,...,n — 1)
as well as (2.16), we see that

(3.8) z(t) = Z Ci(t - T) + (—=1)" /’°° %f(r,m(r))dr for all ¢ > T
=0 t N
Since

tim [ EU 1 atrpar =,

it follows from (3.8) that the solution z satisfies (2.14). Moreover, from (3.8) we
obtain

n—1

39) z0@) = i(i—1)..(i—j+1)Ci(t — )7
i=j

i [ r—t)y»1

(g | YT

=1} ¢ (n—1-j)
Thus, in view of the fact that

C(r -1

tmoo Jy  (n—1-3)!

(3.9) guarantees that the solution z satisfies also (2. 15). Finally, it is clear that
there exist real numbers ¢y, ¢1, ..., ¢,—1 S0 that

Cot+Crt =T+ .. + Coa(t—T)* T =cy + 1t +... + ¢,_1t™!
and so z satisfies (2.12) and, in addition, (2.13).

frz(r))dr fort>T (j=1,..,n-1).

flrz(r))dr=0 (j=l. n—1),
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The proof of the theorem is now complete.

4. EXAMPLES

Example 1. Consider the n-th order (n > 1) Emden-Fowler equation
(D) 2™ (t) = a(t) |z(t) sgnz(t), t>to >0,

where a is a continuous real-valued function on [to, o0) and « is a positive real
number.

An application of Theorem 1 to the differential equation (D) leads to the follow-
ing result: Let m be an integer with 1 <m < n — 1, and assume that

(4.1) f, = gty 0 dt < oo,

Let co,c1, ..., cm be real numbers and T be a point with T > to, and suppose that
there ezists a positive constant K so that

® (g=Ty1 K el Y

Then (D) has a solution z on the interval [T, c0) with the property: (P(z)) = is
asymptotic to the polynomial co +cit + ... +cmit™ for t — oo, i.e. (2.4) holds, and,
in addition, it satisfies (2.5) and (provided that m < n —1) (2.6).

Also, by applying the corollary to the differential equation (D), we arrive at
the next result: Let m be an integer with 1 < m < n — 1, and assume that (4.1)
is satisfied. Then, for any real numbers cg, e, ..., Cm, (D) has a solution = on an
interval [T',00) (where T > max{to,1} depends on cg,ci, ..., cm) with the property
(P(z)).

Moreover, we can apply the proposition for the differential equation (D) to obtain
the result: If

(4.2) f ” gty la(t)| dt < oo

to

and vy < 1, then every solution = on an interval [T,c0), T > tq, of (D) satisfies
(2.10) and (2.11), where c is some real number (depending on the solution )

Furthermore, by an application of Theorem 2 to the differential equation (D),
we can be led to the following result: Assume that

o0

(4.3) _[ =D+ |g(2)| dt < oo
to

and that v < 1. Then every solution z on an interval [T,c0), T > to, of (D) is
asymptotic to a polynomial co + 1t + ... + cp_1t"7! for t — oo, i.e. (2.12) holds,
and, in addition, satisfies (2.13), where cg, ¢, ...,Cn—1 are Teal numbers (depending
on the solution ). More precisely, every solution = on en interval [T,00), T > tg,
of (D) satisfies (2.14) and, in addition, (2.15), where

o0 (8 - T)n—l—i

Gi= § [0+ aymims [T o(6)"sgus(sas]

(i=0,1,..,n—1).
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Now, let us consider the particular case of the Emden-Fowler equation (D) with
a(t) =t u(t) for t > to,
where A is a real number and g is a continuous and bounded real-valued function
on [tg, c0). In this case, we have
la(t)| < 6t* for every ¢ > tq,
where 6 is a positive constant. We immediately see that (4.1) is satisfied if A <

—(n + m7). Moreover, we observe that (4.2) holds if A < —[1 + (n — 1)4], while
(4.3) is fulfilled if A < —[1 + (n — 1)(1 +v)].

Example 2. Consider the second order superlinear Emden-Fowler equation
(d) ="(t) = a(t)[z(t)]*sgnz(t), ¢ >t >0,
where a is a continuous real-valued function on [to, o).

By applying Theorem 1 (or, in particular, Theorem 1A) to the differential equa-
tion (d), we are led to the following result: Assume that

(4.4) ft - 3 |a(t)| dt < oco.

1]
Let cq,c; be real numbers and T be a point with T > to, and suppose that there
exists a positive constant K so that

2
(4.5) A (5 -+ al) <k,
where
(4.6) A(T) = /; (s — T)s2 |a(s)| ds.

Then (d) has a solution x on the interval [T, o), which is asymptotic to the line
cp + cit for t — oo, i.e.

4.7) z(t) = co + it +o(1) for t — oo,
and, in addition, satisfies
(4.8) z'(t) =e1 +0(1) fort — .

Now, assume that (4.4) is satisfied, and let ¢o,c; be given real numbers and
T = 1o be a fixed point. Moreover, let A(T) be defined by (4.6). In the trivial
case where A(T") = 0, (4.5) holds by itself for any positive constant K. So, in what
follows, it will be supposed that A(T') > 0. We easily verify that, for every positive
constant K, (4.5) can equivalently be written as

T2
4. B — 2<o.
49) K42 (el +lalT) - gio] Ko+ (el +lal T <0
Consider the quadratic equation
T
= & 2 S sl 2 =
0e) = +2 | (ol + [ea]T) ~ g | w0+ (ol +[ea| T)* =0

n the complex plane, and let A be its discriminant, i.e.

a={2[tal + el ) - 5%] }2 — 4 (Jeol + |ex] TY?.
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We immediately find
4 i ‘i
A=4——1r1 |- T+ ——1.
In the case where A < 0, the equation Q(w) = 0 has no real roots and consequently
w) > 0 for all w € R. Thus, in this case, there is no positive constant K so that
(4.9) is fulfilled. If A = 0, i.e.

(4.10) ol +laal 7 = o,
then the equation Q(w) = 0 has exactly one (double) real root wy given by
N
4A(T)

Hence, in case that (4.10) holds, (4.9) is fulfilled (as an equality) for K = wp > 0,
Le. there exists a positive constant K so that (4.9) is satisfied. Next, let us consider
the case where A > 0, i.e.

Vi
Then the equation Q(w) = 0 has the real roots
‘ B T2 0 TZ 7
and
12 T I 7= ]

with w; < ws. For each real number w, it holds
Qw) <0 ifand only if wy < w < ws.
By (4.11), we have
~(eol el )+ 1z > =l + e T) 4 2 >0
and consequently w, is positive. Therefore,
w) <0 for any w € (max{0,w; },ws].

So, provided that (4.11) is satisfied, there exists a positive constant K so that (4.9)
holds. We have thus proved that there exists a positive constant X so that (4.9)
(or, equivalently, (4.5)) is satisfied if and only if either (4.10) or (4.11) is fulfilled,
ie. if and only if

T2
which can equivalenlty be written as
T2
(4.12) A(T) (ool + |ea| T) < -

We observe that (4.12) is also true if A(T) = 0. After the above, we can have the
following result:
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Assume that (4.4) is satisfied, and let cp,c; be Teal numbers and T > to be a
point so that (4.12) holds, where A(T) is defined by (4.6). Then (d) has a solution
T on the interval [T, 00), which satisfies (4.7) and (4.8).

Finally, let us consider the particular case of the Emden-Fowler equation (d)
with

a(t) = t*u(t) fort > to,
where A is a real number and p is a continuous and bounded real-valued function
on [tg, o). In this case, there exists a positive constant 6 so that

la(t)] < 6t for every t > to.
We immediately see that (4.4) is satisfied if A < —4. Furthermore, assume that
A < —4 and let ¢y, c; be real numbers and T >t be a point. Here, we have
TA+4

A= [T aeds <0 [ a= s 0 T

So, (4.12) is satisfied if
(A +3)(A +4)

A2 <
T4 (|ag] +]ea| T) < 20
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